Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.213
1.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715091

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
2.
JCI Insight ; 9(9)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38716729

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
3.
New Microbiol ; 47(1): 60-67, 2024 May.
Article En | MEDLINE | ID: mdl-38700885

Acute respiratory tract infection (ARTI) is common in all age groups, especially in children and the elderly. About 85% of children who present with bronchiolitis are infected with respiratory syncytial virus (RSV); however, nearly one-third are coinfected with another respiratory virus, such as human rhinovirus (HRV). Therefore, it is necessary to explore the immune response to coinfection to better understand the molecular and cellular pathways involving virus-virus interactions that might be modulated by innate immunity and additional host cell response mechanisms. This study aims to investigate the host innate immune response against RSV-HRV coinfection compared with monoinfection. Human primary bronchial/tracheal epithelial cells (HPECs) were infected with RSV, HRV, or coinfected with both viruses, and the infected cells were collected at 48 and 72 hours. Gene expression profiles of IL-6, CCL5, TNF-α, IFN-ß, IFN-λ1, CXCL10, IL-10, IL-13, IRF3, and IRF7 were investigated using real-time quantitative PCR, which revealed that RSV-infected cells exhibited increased expression of IL-10, whereas HRV infection increased the expression of CXCL10, IL-10, and CCL5. IFN-λ1 and CXCL10 expression was significantly different between the coinfection and monoinfection groups. In conclusion, our study revealed that two important cytokines, IFN-λ1 and CXCL10, exhibited increased expression during coinfection.


Bronchi , Chemokine CXCL10 , Coinfection , Epithelial Cells , Interferon Lambda , Interferons , Interleukins , Picornaviridae Infections , Respiratory Syncytial Virus Infections , Rhinovirus , Humans , Rhinovirus/physiology , Coinfection/virology , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Epithelial Cells/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Bronchi/virology , Bronchi/cytology , Picornaviridae Infections/virology , Picornaviridae Infections/immunology , Interferons/genetics , Interferons/metabolism , Respiratory Syncytial Virus, Human/physiology , Respiratory Syncytial Virus, Human/genetics , Cells, Cultured , Respiratory Syncytial Viruses/physiology
5.
Sci Rep ; 14(1): 8196, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589444

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Atherosclerosis , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/genetics , Interferons , Endothelial Cells/metabolism , Culture Media, Conditioned/pharmacology , Chemokines/genetics , Chemokines/metabolism , Chemokine CXCL11/genetics , Chemokine CXCL11/metabolism , Chemokine CXCL9/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Atherosclerosis/genetics , Myocytes, Smooth Muscle/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Viperin Protein
6.
Int Immunopharmacol ; 132: 111780, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603853

BACKGROUND: Glycopeptide antibiotic vancomycin is a bactericidal antibiotic available for the infection to Staphylococcus aureus (SA), however, SA has a strong adaptive capacity and thereby acquires resistance to vancomycin. This study aims to illuminate the possible molecular mechanism of vancomycin resistance of SA based on the 16S rRNA sequencing data and microarray profiling data. METHODS: 16S rRNA sequencing data of control samples and urinary tract infection samples were retrieved from the EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute) database. Correlation of gut flora and clinical indicators was evaluated. The possible targets regulated by SA were predicted by microarray profiling and subjected to KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. CXCL10 gene knockout and overexpression were introduced to evaluate the effect of CXCL10 on the virulence of SA and the resistance to vancomycin. SA strains were co-cultured with urethral epithelial cells in vitro. The presence of SA virulence factors was detected using PCR. Biofilm formation of SA strains was assessed using the microtiter plate method. Furthermore, the antibiotic sensitivity of SA strains was evaluated through vancomycin testing. RESULTS: Gut flora and its species abundance had significant difference between urinary tract infection and control samples. SA was significantly differentially expressed in urinary tract infection samples. Resistance of SA to vancomycin mainly linked to the D-alanine metabolism pathway. SA may participate in the occurrence of urinary tract infection by upregulating CXCL10. In addition, CXCL10 mainly affected the SA resistance to vancomycin through the TLR signaling pathway. In vitro experimental results further confirmed that the overexpression of CXCL10 in SA increased SA virulence and decreased its susceptibility to vancomycin. In vitro experimental validation demonstrated that the knockout of CXCL10 in urethral epithelial cells enhanced the sensitivity of Staphylococcus aureus (SA) to vancomycin. CONCLUSION: SA upregulates the expression of CXCL10 in urethral epithelial cells, thereby activating the TLR signaling pathway and promoting resistance to glycopeptide antibiotics in SA.


Anti-Bacterial Agents , Chemokine CXCL10 , Staphylococcal Infections , Staphylococcus aureus , Urinary Tract Infections , Vancomycin Resistance , Vancomycin , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Vancomycin Resistance/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Biofilms/drug effects , Gastrointestinal Microbiome/drug effects , RNA, Ribosomal, 16S/genetics , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Female , Male
7.
Int Immunopharmacol ; 133: 112071, 2024 May 30.
Article En | MEDLINE | ID: mdl-38636374

Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.


Brain , Cell Proliferation , Cerebral Hemorrhage , Chemokine CXCL10 , Mice, Inbred C57BL , Microglia , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Microglia/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/immunology , Cell Proliferation/drug effects , Male , Mice , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Brain/pathology , Brain/drug effects , Brain/metabolism , Brain/immunology , Chemokine CXCL10/metabolism , Disease Models, Animal , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Receptors, CXCR3/metabolism , Receptors, CXCR3/antagonists & inhibitors , Interleukin-2 Receptor beta Subunit/metabolism , Interleukin-10/metabolism , Anisoles , Pyrimidines
8.
J Interferon Cytokine Res ; 44(5): 198-207, 2024 May.
Article En | MEDLINE | ID: mdl-38512222

Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.


Cell Movement , Chemokine CXCL10 , Melanoma , Signal Transduction , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Humans , Culture Media, Conditioned/pharmacology , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Interleukin-8/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Neoplasm Invasiveness , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/pathology
9.
Eur J Obstet Gynecol Reprod Biol ; 296: 292-298, 2024 May.
Article En | MEDLINE | ID: mdl-38503193

OBJECTIVES: This study aimed to determine the occurrence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta, marked by elevated levels of interferon gamma-induced protein 10 (IP-10) (≥2200 pg/mL) in the amniotic fluid of women with preterm prelabor rupture of membranes (PPROM). Specifically, the study investigated whether these intra-amniotic inflammatory changes were more common in women with microbial invasion of amniotic cavity (MIAC) and intra-amniotic inflammation (IAI), as indicated by increased amniotic fluid interleukin (IL)-6 concentration (≥3000 pg/mL). STUDY DESIGN: A cohort of 114 women with singleton pregnancies complicated by PPROM between 24+0 and 36+6 weeks of gestation were included. Amniotic fluid samples were obtained via amniocentesis upon admission. MIAC diagnosis involved aerobic and anaerobic cultures, as well as polymerase chain reaction (PCR) analysis of the amniotic fluid. Immunoassay tests and enzyme-linked immunosorbent assay (ELISA) were used to determine IL-6 and IP-10 concentrations, respectively. RESULTS: Among the participants, 19.3 % and 15.8 % had MIAC and IAI, respectively. The occurrence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta was similar between women with and without MIAC (25 % vs. 40.9 %, p = 0.136, adjusted p = 0.213). The rate of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta was significantly higher in women with IAI compared to those without, after adjusting for gestational age at sampling (55.6 % vs. 22.9 %, p = 0.005, adjusted p = 0.011). CONCLUSION: This study revealed comparable rates of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta in women with and without MIAC, but a higher prevalence of intra-amniotic inflammatory changes associated with chronic inflammation in the placenta in women with IAI. These findings suggest involvement of chronic inflammation even in women with PPROM with acute intra-amniotic inflammation.


Chorioamnionitis , Fetal Membranes, Premature Rupture , Pregnancy , Infant, Newborn , Female , Humans , Amniotic Fluid/metabolism , Chorioamnionitis/diagnosis , Interferon-gamma , Chemokine CXCL10/metabolism , Fetal Membranes, Premature Rupture/diagnosis , Inflammation/complications , Placenta/metabolism , Gestational Age
10.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 197-204, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38430022

Elevated homocysteine (Hcy) levels have been linked to the development of cardiovascular diseases, notably endothelial dysfunction, a critical precursor to atherosclerosis. In this extensive investigation, we explore the intricate pathways through which Hcy influences endothelial dysfunction, with particular attention to the CXCL10/CXCR3 axis. Employing a dual approach encompassing both in vitro and in vivo models, we scrutinize the repercussions of Hcy exposure on endothelial functionality. Our results reveal that Hcy significantly impairs crucial endothelial processes, including cell migration, proliferation, and tube formation. Concomitantly, Hcy upregulates the expression of adhesion molecules, exacerbating endothelial dysfunction. In a murine hyperhomocysteinemia (HHcy) model, we observed a parallel increase in plasma Hcy levels and adverse vascular effects. Moreover, our study unraveled a pivotal role of the CXCL10/CXCR3 axis in Hcy-induced endothelial dysfunction. Hcy exposure led to the upregulation of CXCL10 and CXCR3, both in vitro and in HHcy mice. Importantly, the blockade of this axis, achieved through specific antibodies or NBI-74330, mitigated the detrimental effects of Hcy on endothelial function. In conclusion, our findings illuminated the central role of the CXCL10/CXCR3 axis in mediating Hcy-induced endothelial dysfunction, providing valuable insights for potential therapeutic strategies in managing HHcy-related cardiovascular diseases.


Cardiovascular Diseases , Chemokine CXCL10 , Receptors, CXCR3 , Animals , Mice , Homocysteine/pharmacology , Up-Regulation , Chemokine CXCL10/metabolism , Receptors, CXCR3/metabolism
11.
Int Immunopharmacol ; 132: 111929, 2024 May 10.
Article En | MEDLINE | ID: mdl-38555817

Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.


Acetamides , Autophagy , Chemokine CXCL10 , Inflammation , Macrophages , Mice, Inbred C57BL , Pyrimidinones , Receptors, CXCR3 , Animals , Receptors, CXCR3/metabolism , Receptors, CXCR3/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Autophagy/immunology , Inflammation/immunology , Inflammation/metabolism , Poly I-C/pharmacology , Lysosomal Membrane Proteins/metabolism , Lysosomal Membrane Proteins/genetics , Male , Signal Transduction , Humans , Macrophage Activation
12.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Article En | MEDLINE | ID: mdl-38427437

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


B7-H1 Antigen , Myeloid-Derived Suppressor Cells , Animals , B7-H1 Antigen/metabolism , Mice , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Neoplasm Metastasis , Cell Line, Tumor , Female , Disease Models, Animal , Chemokine CXCL10/metabolism
13.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Article En | MEDLINE | ID: mdl-38308278

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Chemokine CXCL10 , Chemotaxis , Glycosaminoglycans , Animals , Cricetinae , Humans , Mice , Chemokine CXCL10/metabolism , Cricetulus , Endothelial Cells/metabolism , Heparin/metabolism , T-Lymphocytes/metabolism , Glycosaminoglycans/metabolism
14.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38339172

The study investigated a profile of chemokines and growth factors in the aqueous humor (AH) of eyes with Fuch's endothelial corneal dystrophy (FECD) and cataracts in comparison with cataract patients as a control group. A total of 52 AH samples (26 FECD + cataract and 26 cataract/control) were collected before cataract surgery. None of the patients had any clinically apparent inflammation at the time of AH collection. The AH levels of MCP-1 (CCL2), MIP-1α (CCL3), MIP-1ß(CCL4), RANTES (CCL5), eotaxin (CCL11), IP-10 (CXCL10), FGF basic, G-CSF, GM-CSF, PDGF-bb, and VEGF were compared between the groups. The analyses were performed using the Bio-Plex 200 System from Bio-Rad. Among the studied parameters, the AH levels of RANTES, eotaxin, and IP-10 significantly increased in the FECD + cataract eyes, compared with the cataract controls (p < 0.05). Elevated levels of the RANTES, Eotaxin, and IP-10 indicate more intense inflammation in the eyes of patients in the FECD + cataract group. Moreover, these factors exhibit potential as predictive biomarkers for early detection of FECD in cataract patients. The discovery of elevated concentrations of biochemical markers in a patient, who has not yet received a clinical diagnosis, may suggest the need for heightened observation of the other eye to monitor the potential development of FECD.


Cataract , Corneal Dystrophies, Hereditary , Humans , Cytokines/metabolism , Aqueous Humor/metabolism , Chemokine CXCL10/metabolism , Chemokines/metabolism , Cataract/metabolism , Inflammation/metabolism , Corneal Dystrophies, Hereditary/metabolism
15.
Int J Radiat Biol ; 100(4): 541-549, 2024.
Article En | MEDLINE | ID: mdl-38227479

PURPOSE: In case of a nuclear accident, individuals with high-dose radiation exposure (>1-2 Gy) should be rapidly identified. While ferredoxin reductase (FDXR) was recently suggested as a radiation-responsive gene, the use of a single gene biomarker limits radiation dose assessment. To overcome this limitation, we sought to identify reliable radiation-responsive gene biomarkers. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from mice after total body irradiation, and gene expression was analyzed using a microarray approach to identify radiation-responsive genes. RESULTS: In light of the essential role of the immune response following radiation exposure, we selected several immune-related candidate genes upregulated by radiation exposure in both mouse and human PBMCs. In particular, the expression of ACOD1 and CXCL10 increased in a radiation dose-dependent manner, while remaining unchanged following lipopolysaccharide (LPS) stimulation in human PBMCs. The expression of both genes was further evaluated in the blood of cancer patients before and after radiotherapy. CXCL10 expression exhibited a distinct increase after radiotherapy and was positively correlated with FDXR expression. CONCLUSIONS: CXCL10 expression in irradiated PBMCs represents a potential biomarker for radiation exposure.


Leukocytes, Mononuclear , Radiation Exposure , Humans , Mice , Animals , Leukocytes, Mononuclear/radiation effects , Dose-Response Relationship, Radiation , Up-Regulation , Triage , Radiation Exposure/adverse effects , Biomarkers/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism
16.
Cytokine ; 174: 156455, 2024 02.
Article En | MEDLINE | ID: mdl-38043142

BACKGROUND: Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS: Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS: Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1ß. CONCLUSIONS: Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.


Carcinoma , Cytokines , Humans , Cytokines/metabolism , Chemokine CXCL10/metabolism , Killer Cells, Natural , Flow Cytometry , Carcinoma/metabolism , CD56 Antigen/metabolism , Receptors, IgG/metabolism
17.
Cell Mol Immunol ; 21(1): 60-79, 2024 01.
Article En | MEDLINE | ID: mdl-38062129

The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.


Dioxanes , Immune Checkpoint Inhibitors , Immunosuppression Therapy , Lung Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Nitrobenzenes , Proto-Oncogene Proteins c-bcl-2 , Pyrroles , Tumor-Associated Macrophages , Animals , Mice , Dioxanes/pharmacology , Dioxanes/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Nitrobenzenes/pharmacology , Nitrobenzenes/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , Pyrroles/therapeutic use , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Transcription Factor RelA/metabolism , Tumor Microenvironment/drug effects , Cell Polarity/drug effects , Lung Neoplasms/drug therapy , Humans , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred C57BL , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Immunosuppression Therapy/methods
18.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Article En | MEDLINE | ID: mdl-37984422

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Arthritis, Rheumatoid , Synoviocytes , Humans , Mice , Animals , Synoviocytes/metabolism , Amino Acids/metabolism , Arthritis, Rheumatoid/genetics , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL10/metabolism , Amines/metabolism , Fibroblasts/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Cells, Cultured
19.
An Bras Dermatol ; 99(2): 196-201, 2024.
Article En | MEDLINE | ID: mdl-37985303

BACKGROUND: Vitiligo is the most common pigmentary disorder and is considered a chronic, cumulative, multifactorial disease. The crucial role of cytotoxic CD8+ T lymphocytes and the IFNγ/CXCL10 axis has been demonstrated in its pathogenesis. OBJECTIVE: To evaluate the clinical profile and immuno-inflammatory markers in patients with vitiligo in a reference medical center. METHODS: Cross-sectional study in which all patients with vitiligo seen at the medical center the from 2019 to 2022 were evaluated, to outline the clinical profile. Moreover, cardiovascular risk biomarkers (neutrophil/lymphocyte ratio and C-reactive protein levels) were measured, as well as cytokines and chemokines (TNFα, IFNγ, IL10, IL15 and CXCL10) in the serum of a subgroup of 30 patients. RESULTS: There was a predominance of females, with a mean age of 43 years. Most were phototypes IV or V (71.3%), without comorbidities (77.55%), and without a family history of vitiligo (70.41%). Higher levels of neutrophil/lymphocyte ratio, C-reactive protein, and inflammatory cytokines/chemokines were documented in vitiligo patients when compared to the control group (non-significant). As relevant data, the highest values of CXCL10 were detected in patients with vitiligo versus controls, as well as in patients with disease of shorter duration (p<0.05). STUDY LIMITATIONS: The number of assessed patients was small due to recruitment difficulties caused by the COVID-19 pandemic. CONCLUSION: The present data contribute to confirming the relevant role of the IFNγ/CXCL10 axis in the pathogenesis of vitiligo, highlighting CXCL10 as a possible activity marker.


Vitiligo , Female , Humans , Adult , Male , Chemokine CXCL10/metabolism , C-Reactive Protein , Cross-Sectional Studies , Pandemics , Cytokines
20.
Circulation ; 149(9): 669-683, 2024 02 27.
Article En | MEDLINE | ID: mdl-38152968

BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.


Atherosclerosis , Chemokine CXCL10 , Interleukin-6 , Proteogenomics , Humans , Atherosclerosis/genetics , Chemokine CXCL10/metabolism , Coronary Artery Disease/genetics , Genome-Wide Association Study , Interleukin-6/metabolism , Mendelian Randomization Analysis , Peripheral Arterial Disease , Proteomics , Stroke/genetics
...